4728 Mechanics 1

1 (i)	$\begin{aligned} & 0.5 \times 6=0.5 \times 0.8+4 \mathrm{~m} \\ & \mathrm{~m}=0.65 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	Uses CoLM If g used throughout, possible 3 marks
(ii)	$\begin{aligned} & 0.5 \times 6=-0.5 \times 0.8+4 \mathrm{~m} \\ & \mathrm{~m}=0.85 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	After momentums opposite signs If g used throughout, 0 marks
2 (i)	$\begin{aligned} \mathrm{T} & =400 \mathrm{~N} \\ \mathrm{D} & =400+900 \\ & =1300 \mathrm{~N} \end{aligned}$	B1 M1 A1 [3]	Order immaterial Or T + 900; sign correct
(ii)	$\begin{aligned} & 500 \times 0.6=\mathrm{T}-400 \\ & \mathrm{~T}=700 \mathrm{~N} \\ & 1250 \times 0.6=\mathrm{D}-900-700 \\ & \mathrm{D}=2350 \mathrm{~N} \\ & O R \\ & \\ & (500+1250) \times 0.6=\mathrm{D}-400-900 \\ & \mathrm{D}=2350 \mathrm{~N} \end{aligned}$	M1 A1 A1 M1 A1ft A1 M1 A1 A1 $[6]$	(Award M marks even if g included in ma terms. M marks require correct number forces) Uses N2L one object only Uses N2L other object $\mathrm{ftcv}(\mathrm{T}$ from (ii)); allow T instead of its value Uses N2L for both objects
3 (i)	$5 \cos 30$ or $5 \sin 60$ or 4.33 $5 \cos 60$ or $5 \sin 30$ or 2.5	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ {[2]} \end{array}$	Order immaterial, accept +/-. May be awarded in (ii) if no attempt in (i)
(ii)	$\begin{aligned} & 7-4.33(=2.67) \text { and } 9-2.5(=6.5) \\ & \mathrm{R}^{2}=2.67^{2}+6.5^{2} \\ & \mathrm{R}=7.03 \\ & \tan \theta=6.5 / 2.67 \\ & \theta=67.6,67.7 \text { degrees } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1* } \\ \text { A1 } \\ \text { D*M } \\ 1 \\ \text { A1 } \\ \text { D*M } \\ 1 \\ \text { A1 } \\ \hline \end{array}$	Subtracts either component from either force 3sf or better Valid trig for correct angle 3sf or better
4 (i)	$\begin{aligned} & 20 \cos 30 \\ & 20 \cos 30=3 a \\ & a=5.77 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Resolves 20 (accept $20 \sin 30$) Uses N2L horizontally, accept g in ma term
(ii)	$\begin{aligned} & \mathrm{R}=3 \times 9.8+20 \sin 30(=39.4) \\ & \mathrm{F}=20 \cos 30(=17.3) \\ & 17.3=39.4 \mu \\ & \mu=0.44 \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	Resolves vertically (accept -, cos if sin in i); correct no. terms Correct (Neither R nor F need be evaluated) Uses $\mathrm{F}=\mu \mathrm{R}$

5 (i)	$\begin{aligned} & \hline V=\int 0.8 \mathrm{tdt} \\ & \mathrm{v}=0.8 \mathrm{t}^{2} / 2(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{v}=13,(\mathrm{c}=13) \\ & \mathrm{v}=0.4 \times 6^{2}(+\mathrm{c}) \\ & \mathrm{v}=27.4 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Attempt at integration Award if c omitted
(ii)	$\begin{aligned} & \mathrm{s}=\sqrt{0.4 \mathrm{t}^{2}(+\mathrm{c}) \mathrm{dt}} \\ & \mathrm{~s}=0.4 \mathrm{t}^{3} / 3+13 \mathrm{t}(\mathrm{k}) \\ & \mathrm{t}=0, \mathrm{~s}=0,(\mathrm{k}=0) \\ & \mathrm{s}=0.4 \mathrm{x} 6^{3} / 3+13 \times 6 \\ & \mathrm{~s}=106.8 \mathrm{~m} \end{aligned}$	M1* A1ft M1 D*M1 A1 [5]	Attempt at integration of $\mathrm{v}(\mathrm{t})$ $\mathrm{ftcv}(\mathrm{v}(\mathrm{t})$ in (i)) Allow if $\mathrm{k}=0$ assumed. Accept 107 m .
(iii)	Fig. 2 Fig. 1 has zero initial velocity/gradient Fig. 3 does not have a increasing velocity/gradient	$\begin{gathered} \hline \text { B1 } \\ {[1]} \\ \text { B1 } \\ \text { B1 } \\ {[2]} \\ \hline \end{gathered}$	
$\begin{array}{\|l\|l} \hline 6 & (\mathbf{i}) \\ & \mathbf{a} \\ & \mathbf{b} \end{array}$	$\begin{aligned} & 2.5=9.8 \mathrm{t}^{2} / 2 \\ & \mathrm{t}=0.714 \mathrm{~s} \text { or better or } 5 / 7 \\ & \mathrm{v}^{2}=2 \times 9.8 \times 2.5 \quad \text { OR } \mathrm{v}=9.8 \times 0.714 \\ & \mathrm{v}=7 \mathrm{~ms}^{-1} \text { or } 6.99 \text { or art } 7.00 \end{aligned}$	M1 A1 $[2]$ M1 A1 $[2]$	Uses $\mathrm{s}=0+/-\mathrm{gt}^{2} / 2$ Not awarded if - sign "lost" Uses $\mathrm{v}^{2}=0+/-2 \mathrm{gs}$ or $\mathrm{v}=\mathrm{u}+/$ - gt Not awarded if - sign "lost"
(ii)	$\begin{aligned} & \mathrm{R}=2 \times 9.8 \sin 60(=16.97=17) \\ & \mathrm{F}=0.2 \times 16.97(=3.395 \text { or } 3.4) \\ & \text { Cmpt weight }=2 \times 9.8 \cos 60(=9.8) \\ & 2 \mathrm{a}=9.8-3.395 \\ & \mathrm{a}=3.2 \mathrm{~ms}^{-2} \\ & \text { Distance down ramp }=5 \mathrm{~m} \\ & \mathrm{v}^{2}=2 \times 3.2 \mathrm{x} 5 \\ & \mathrm{v}=5.66 \text { or } 5.7 \end{aligned}$	B1 M1 A1ft B1 M1 A1ft B1 M1 A1ft [9]	With incorrect angle, e.g $\mathrm{R}=2 \mathrm{x} 9.8 \cos 60(=9.8) \mathrm{B} 0$ $\mathrm{F}=0.2 \times 9.8(=1.96) \mathrm{M} 1 \mathrm{~A} 1 \downarrow$ Cmpt wt $=2 \times 9.8 \sin 60(=16.97) \mathrm{B} 0$ $2 \mathrm{a}=16.97-1.96 \mathrm{M} 1$ $\mathrm{a}=7.5 \mathrm{~A} 1 \sqrt{ } \sqrt{ } \mathrm{ft} \mathrm{cv}(\mathrm{R}$ and Cmpt weight) $\begin{aligned} & \mathrm{v}^{2}=2 \mathrm{x} 7.5 \mathrm{x} 5 \\ & \mathrm{v}=8.66 \text { or } 8.7 \text { A1 } \sqrt{ } \quad \mathrm{ft} \operatorname{cv}(\sqrt{ }(10 \mathrm{a})) \end{aligned}$
7 (i)	$\begin{aligned} & \mathrm{p}=4-2 \times 0.4(=3.2) \\ & \mathrm{q}=1-2 \times 0.4(=0.2) \\ & 0.7 \times 3.2-0.3 \times 0.2=(1 \mathrm{x}) \mathrm{v} \\ & \mathrm{v}=2.18 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 A1 M1 A1 A1 [6]	Use of $\mathrm{v}=\mathrm{u}-0.4 \mathrm{t}$ Accept q $=-0.2$ from $-1+2 * 0.4$ Uses CoLM on reduced velocities

\begin{tabular}{|c|c|c|c|}
\hline (ii)
\mathbf{a}

b \& \[
$$
\begin{aligned}
& 0=1-0.4 \mathrm{t} \\
& \mathrm{t}=2.5 \mathrm{~s} \\
& \mathrm{P}=4 \times 3-0.5 \times 0.4 \times 3^{2} \\
& \mathrm{Q}=1 \times 2.5-0.5 \times 0.4 \times 2.5^{2} \\
& \mathrm{PQ}=10.2+1.25=11.45 \mathrm{~m}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| B1 |
| [3] |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 |
| A1 |
| [6] | \& | Straight line with larger y intercept slopes towards t axis, but does not reach it. Straight line with negative y intercept slopes towards taxis, and gets to t axis before other line ends. SR if $\mathrm{t}=2$ in ii give B1 if line stops before axis Finds when Q comes to rest (any method) |
| :--- |
| Uses $\mathrm{s}=\mathrm{ut}-0.4 \mathrm{t}^{2} / 2$ |
| (nb $0^{(2)}=1^{(2)}-0.4 Q^{2} / 2 \quad B 1$; convincing evidence (graph to scale, or calculation that Q comes to rest and remains at rest at t less than 3, M1A1;graph A1 needs -ve v intercept) SR if $\mathrm{t}=2$ in iib, allow M1 for $\mathrm{s}=\mathrm{ut}-0.4 \mathrm{t}^{2} / 2$ And A1 for $\mathrm{PQ}=8.4$ |

\hline
\end{tabular}

Alternative for Q3 where 7 N and 9 N forces combined initially

3 (i)	$5 \cos 30$ or $5 \sin 60$ or 4.33 $5 \cos 60$ or $5 \sin 30$ or 2.5	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ {[2]} \end{gathered}$	Order immaterial, accept +/-. May be awarded in (ii) if no attempt in (i)
(ii)	$\begin{aligned} & \mathrm{Z}^{2}=7^{2}+9^{2}(=130, \mathrm{Z}=11.4017 \ldots) \\ & \text { cos(angle of } \mathrm{Z} \text { with } \mathrm{y} \text { axis })=9 / 11.4017 . . \\ & \text { angle of } \mathrm{Z} \text { with } \mathrm{y} \text { axis }=37.8746 \ldots \\ & \text { Angle opposite } \mathrm{R} \text { in triangle of forces }= \\ & 180-(37.8746+90+30) \\ & =22.125(\text { Accept } 22) \\ & \mathrm{R}^{2}=5^{2}+11.4017^{2}-2 \times 5 \times 11.4017 \cos 22.125 \\ & \mathrm{R}(=7.0269)=7.03 \mathrm{~N} \\ & 11.4017^{2}=5^{2}+7.0269^{2}-2 \times 5 \times 7.0269 \cos \mathrm{~A} \\ & (\mathrm{~A}=142.33) \\ & \text { Angle between } \mathrm{R} \text { and } \mathrm{y} \text { axis }=142.33-30- \\ & 90(=22.33) \\ & \theta(=90-22.33)=67.7 \text { degrees } \end{aligned}$	M1* A1 D*M1 A1 D*M1 A1 [6]	Z is resultant of 7 N and 9 N forces only R is resultant of all 3 forces Complete method Cosine rule to find R Or Sine Rule. A is angle between R and 5 N forces Complete method θ is angle between R and x axis

